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The Duality between Suboptimization and Parameter Deletj.on

by

Elmer L. P etsrsors*

Abstract

The main tool used in studying the influence of given perturbation parame-

tars on a given optimization problem is, of course, the corresponding Rockafallar

4: dual problem (in which the dual variables are in a one-to-one correspondence with

the parameters). However , even when the given optimization problem is defined in

terms of simple formulas, there are many important cases where the corresponding

dual problem can not be computed explicitly (in terms of simple formulas ) unless

certain additiona l (uninteresting) perturbation parameters are included . Under

a very weak hypot hesis, the main theorem to be given here asserts that a (sub)-

optimization of th. retutting dual problem over the add itional (uninteresting)

dual variables produces the desired dual problem (i.e., the dual problem that

corresponds to the original optimization problem without th, additional perturba-

tion parameters,). In add ition to its uses in para metr ic anal ysis this theorem can

be used to show that various decomposition pr inciples are dual to one another and

hence are essentially equivalent.

Duality, suboptimization, parametric programaing, decomposition.
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1. Introduction. A given optimization problem is seldom studied in isolation,

.$ but is usually ubedded in a parameterized fami ly of closely related optimiza-

tion problems. There are gane’rally many such families to choose from, but for

practical reasons the family chosen ssually includes as parameters at least all

of th. potentially variable “problem inputs” . The other parameters included

may not have any practical significance, but are chosen because their presence

makes certain computations much more tractable . In defining the parameter

scales it is advantageous to make zero coincide with the given problem, so that

the input parameters can also be interpreted as perturbations of the given input

date .

In engineering design, management science, and operations research there are

at least two compelling practical reasons for studying such problem families:

(1) a designei or decision-maker frequently needs to know how his optimal design

or decision changes with changing input data ; and (2)~he also needs to know the

sensitivity of his optimal design or decision to small p~~?turbations of hi. given

input dat., so that he can establish the accuracy needed for such data. Moreover,
in the prediction of scientific phenomena through the use of variational princi-

ples there are clearly analogous reasons for studying such problem famil ies .

Of course, the indispensable tool to be used in all such studies is the corre-

sponding Rockaf.llar dual problem [i3,l’1~,l5).

In “ordinary mathematical progra~~~ng” the only pert urbation paramet ers con-

sidered are those that perturb the given upper end/or lover bounds placed on the

constraint functions . As demonstrated on page 320 of (lIi], the corrs.ponding
S

Rockafillar dual problem ii then jus t the “ordinary dual problem” that evolved
fro. the ‘Wolfe dual problem” [161 via the work of P.1k (,~ . Unlike duality in

• linear programming, the ord inary dual problem genorally can not be computsd ix-
• plicitly (In terms of simple formula. ), even when the objective and constraint •

functions Lu th. given problem ar e expressed in terms of ri fle for mulas .
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The main tool used in studying the influence of given perturbation parame-

ters on a given optimization problem is, of course, the corresponding Rockafellar

dual problem (in which the dual variables are in a one-to-one correspondence with

the parameters). However, even when the given optimization problem is defined in

terms of simple formulas, there are many important cases where the corresponding

dual problem can not be computed explicitly (in terms of simple formulas ) unless

certain additional (uninteresting ) perturbation parameters are included . Under

• a very weak hypothesis, the main theorem to be given here asserts tha t a (sub)-

optimization of the resulting dual problem over the additional (uninteresting)

dua l variables produces the desired dual problem (i.e., the dual problem that

corresponds to the original optimization problem without th. additional perturba-

tion parameters). In addition to its uses in parametric analysis this theorem can

be used to show that various decomposition principl es are dual to one another and

hence are essentially equivalent .

Duality, suboptimization , paraa.trLc programaing, decomposition.
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1. Introduction.. A given optimization problem is seldom studied in isolation ,

but is usually ethedded in a parameterized family of closely related optimiza-

tion problems. Ther e are gene’rally many such families to choose from, but for

practical reasons the family chosen esually includes as parameters at least all

of the potentially variable “problem inputs” . The other parameters included

may not have any practical significance, but are chosen ’because their presence

makes certain computations much mere tractable. In defining the parameter

scales it is advantageous to make zero coincide with the given prob lem, so tha t

the input parameters can also be interpreted as perturbations of the given input

data.

In engineering design , management science, and operations research there are

at least two compelling practical reasons for study ing such problem families :

(1) a designer or decision-maker frequently needs to know how his optimal design

or decision changes with changing input data ; and (2) he also needs to know the

sensitivity of his optimal design or decision to small perturbations of his given

input data , so that he can establish the accuracy needed for such data . Moreover ,

in the prediction of scientific phenomena through the use of variational princi-

ples there are clearly analogous reasons for studying such problem families .

Of course, the indispensable tool to be used in all such studies is the corre-

sponding Rockafellar dual problem [13,114,15].

In “ordinary mathematical progra~~~ng” the only perturbation parameters con-

sidered are those that perturb the given upper and/or lower bounds placed on the

constrain t functions . As damenstrated on page 320 of (114], the corresponding

lockafellar dual problem is then just the “ordina ry dual problem” that evolved

from the “Wolfe dual problem” [16] via the work of Palk [4] . Unlike duality in

linear progra~~~ng, the ordinary dual problem genarelly can not be computed ex-

plicitly (in terms of simple formulas) , even when the objective and constraint

functions in the given problem ars expressed in terms of simple formulas.
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According to Rockafellar (on page 322 of [1143), this major obstacle to working

with the ordinary dual problem is , in a certain sense , due to the fact that the

upper and/or lower bound perturbation pa rameters “are ‘not enough to compensate

for nonlinearities of the constraint functions”:

In (generalized) “geometric programing” there are additional perturbation

parameters that compensate for such nonlinearities. In fact , [12 3 (and , for a

limited formulation , page 3214 of (lie]) shows that the corresponding Rockafellar

dual problem is then just the “geometric dual problem” that evolved from Chap-

ter VII of (33 via the work of Peterson [7,8,9] . Like duality in linear pro-

graming, the geometric dual problem generally can be computed explicitly (in

terms of functions that in many important cases have very simp le formulas).

In fact , geometric programing duality is , in retrospect , a mere natura l ext en-

sion of linear programing duality than i. ordinary programing duality.

Some, though u ually not all , of the additional perturbation parameters may

actually perturb other problem input data and hence be of interest in their own

right . In fact , this phenomena can be clearly illustrated by the following five

classes of optimization problems (which , incidently, al so indicate how geometric

programing has mere closely unified many of the major subfield. of optimization

theory).

In prototype geometric programing (described by examples I and 6 in sec-

tions 2.1 and 2.2 of (9]), nonconvex inseparable ordinary “posynomial” optimiza-

tion problems are formulated as convex separable geometric programing problems

in which th. additional perturbation parameters perturb (the logarithm of) the

given posynomial coefficients . Generally many, though usually not all , of the

posynomial coefficient s are potentially variable inputs , such as costs per unLt

quantity of tsridl .

In the theory of “nenlines’r networks” (described by example 5 in section 2.1
of (9)) ,  the variatio nal principiss ~~~1oy.d are in essence alr eady formulated ~~

- 2 -



separable geometric programing problems in which the perturbation parameters

perturb the given input “flows” or input “potential differences ” and certain

other (physically imperturbable) quantities . In a recent economics extension (10]

the perturbation parameters peFturb the given input “flows” or input “costs” and

“prices” and certain other (economically imperturbable) quantities .

In the theory of “dynamic programing” with linear “transition functions”

(described by example l~ in section 2.1 of [ 9] ) ,  the multistage optimization prob-

lems considered are readily recognized as partially separable geometric program-

ming problems in which the perturbation parameters translate and hence perturb

the given “policy” and “state” sets as well as the given “initial state” and

“final target” sets .

In facility location theory (described by example 3 in section 2.1 of [ 9 ] ) ,

the inseparab le ordinary “generalized Weber problems” considered are easily formu-

lated as (partially separable) geometric programing problems in which the addi-

tiona l pertu rbation parameters translate and hence perturb the given locations

of the pr eviously existing facilities .

In the theory of “ii, programing” (described by example 2 in section 2.1

of (9)), 1~ constrained regression problems and inseparable ordinary quad-

ratically constra ined quadratic programing problems are formulated as separable

geometric programing problems in which the additional perturbation parameters

perturb the given vector that is being “optimally approximated” .

In su ary , the geometric programing approach to a given optimization prob-

lem is generally much more powerful than the ordinary programing approach . In

fact, many inseparable ordinary programing problems can be formulated as sepa-

rable geometric programing problems ; and the correspond ing geometric dual prob-

lem provides the means for analyzing the effect of a much broader class of input

perturbations . Moreover , ther , are many important cases where the corresponding
g o.etric dual pr oblem can be deriv ed in ter of very simple formulas even

- 3 -
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S

though the corresponding ordinary dua l problem can be expressed only implicitl y

in terms of the solution of another parameterized family of optimization prob-

lems -- a dichotomy that is exp lained in (11].

- -~ 
Although such tractability provides a relatively easy ana lysis of the corre-

sponding problem family, the preceding five examples indicate that in many impor-

tant cases such problem families are larger than desired; that is, they have

perturbation parameters that perturb given input data that is actually imper-

turable according to rea l-world considerations . Such excess perturbation parame-

ters can be a dimensional curse because they can drastically increase the nuther

of certain computations without any corresponding increase in the amoun t of usable

information . However, the main theorem to be established here implies that such

perturbation parameters can be effectively deleted (i.e. kept equa l to zero) by

suboptimizing the geometric dual problem over the corresponding dua l variables .

I In large-scale linear programing it is knoma that the “Benders decomposi-

tion” (1] of certain structured dual problems (by suboptimization ) is “dual ” to
the “Dautaig-Wolfe decomposition ” (2] of the corresponding primal probleis (by

Lagrangian optimization). That type of decomposition duality can be viewed as a
corollary to the main theorem of this paper . In fact , the main theorem of this

paper can also be used in large-scale geometric programing to dualize certain

decomposition principles described in subsections 3.1.6 and 3.3.6 of (9].
The only prerequisite for this paper is some of the convexity theory in

(14] -- especiall y the theory having to do with the “relative interior” (ri S)
of an arbitrary convex set S c 5d (N-dimensional Euclidean space).

2. Rockafellar duality . Suppose that g:C is a (proper ) function g with a non-
• empty (effectiv.) domain C ~ E~ , and assune that the independent var iable (d ,p)

in C is the Cartesian product of a “decision” (vector) variable d and a “perturba-

• tton” (vector ) parameter p
• V .

_ _ _  -__________ - —- —--- _ _ _ _ _



Consider the parameterized family G that consist. of the following optimiza-

tion prob Lems A (p)

PR0BL~~ A (p) . Using the “feasible~solution” set

S(p) ~ [dl (d ,p) E c)
calculate both the “problem infimum”

q,(p) ~~
‘ inf g(d ,p)

d E S ( p )
and the “optima l soluti on” set

S’(p) G [d E S ( p ) ~g(d ,p) =

• For a given perturbation p , problem A(p) is either “consistent” or “incon-
sistent” , depending on whether the feasible solution set S(p) is nonempty or

empty . The (effective) domain of the infimum function q is the “feasible pertur-
bation” set

P ~ (p~problem A(p) is consistent)

which ii obviously identical to [p~ (d ,p ) EC for at least one d) and hence is not

• empty . Unlike the function g, the function ~ may assume the value -. . However ,
for our purposes, it is not advantageous to follow Rockafellar ’s custom of arti-
ficially defining g and ~ to be sc~ outs ide their respective domains C and p

Now, suppose that g:C has a “conjugate trans form ” h:D ; tha t is , suppose

there is a function h with a nonempty domain

D ~~
‘ [(q,.)~ sup [(q,d> + (e ,p) - g(d,p)] <.s~)(d ,p ) E c

and function values

• h (q,e) G ~~~~ ((q,d) + (e ,p) 
- g(d,p)]

(d,p) EC

The inner product (q,d) associa tes the “dual perturbation” parameter q with the

“primal decision ” variable d , and the inner product (e ,p) associates the “dual
decision” variable e with the “primal perturbation” parameter p

Consider the pera terfz.d family $ that consists of the following optimiza-
tion problam 1(q )

- 5 -



PROBLEM B (q). 1~sing the feasible solutt~n see

T(q) ~‘[ e~ (q, e ) E ,D3 ,

calculate both the problem infimum

~ (q) ~ inf h (q, e)
eE T ( q )

and the optimal solution set

T*(q) ~ [e ET(q) h(q, e) =

Needless to say, the domain of the infimum function ~fr is the fea sible per-

turbation set

~ [q ~problem B(q)  is consistent)

which is clearly not empty .

Due to the known sy etry (5,6,14] of the conjugate transformation on the

class of all closed convex functions g:C (as wall as the obvious symetry of the

preceding association of perturbation parameters and decision variables), families

a and B are termed Sockafeflar dual families, and problems A(O ) and B(o) are termed

Rockafeller dut I nrob L.~~~~ Actually, Rockafellar [13,14,151 formulates B as a

family of maximization problems by placing minus signs in front of the sup and e in
the definition of h:D . Although that formulation facilitates specializations to

(the standard formulations of) linear programing duality and ordinary programing

duality, the preceding formulation facilitates a specialization [123 to geometric

programing duality .

To (re)oriaut the reader toward the preceding formulation, we now sumsarize

• Rockafellar ’s most relevant results in terms of that formulation .

Thsorem 0 . Suppose the function g:C is convex and closed (~~4 hence has a

conluaate transform h:D). ~~~~~~~,

(I) iLtber the tnU~~~ function ~ is finite and convex on Its domain p

- 6 -



(II ) the infimum function ç is finite on its domain P if and only if the dual

problem B(0) is consistent; in which case

(i) the dual oblective function h(0, ):T(o) is the conj ugate trapsform

(ii) the dual infitaim ~(o) is finite if and only if 0 is in the domain PC

of the closure ~pC:pC ~~ cp:p, in which event

• 1 0 = q)
C

(Q)~~~~~(Ø) and ~~~C
(~~) =

(iii) if the primal problem A (o) is also consistent, ~~~~ 0 is in the

domain p0 and

� ~ (O), with equality only if ~~c (0) =

(iv) the infiiaia function ~ can differ from its closure 
~ C only at

relative boundary points of P,

(v) I f the duil problem B(O) has a (strongly) feasible solution ~~for

which (o,~ )E(ri D), and if the duil infi* *(O) is finite , ~~~~
(a.) primal problem A(o ) is also consistent,

• (b) 0
C

(0) = ~(o) and benc~ 0 =

(c) the primal opt~i*al solution set S’(o) ~1

Conclusion (v) is, of course, the relevant version of “Fenchel’s theorem”.

It is important to note that conclusions (II ) and (i) to Theorem 0 provide

a method for constructing, without the use of numerical optimization techniques,

the closure q?:? ç:P (which, by virtue of conclusion (iv) to Theorem 0, is

essentially the desired infiamt function ç:P) . In particular , if the dual

feasible solution set T(0) is not ~~ ty (which, as indicated by conclusions (I)

and (II ) to Theorem 0, is the only nontrivial convex case), T(0) can of course

be co,ersd vi thaaeab 
•
~

K e Ce l
,e2,...,e

M,...3 C

which need nly contain a finite nu~~er m of points s~ when T(0) i~ bounded .

Each mash K leads to both an approximating function that bounds ~~ fro. below

- 7 -
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and an approximating function that bounds from above. Moreover , it is a con-

sequence of conjugate transform theory that these lover and upper approximations

can be made with arbitrary accuracy, simp ly by choosing the mesh M to be suff i-

ciently dense in T(0).

To obtain the lower approximating function, fi rst note tha t conclusions

(I) and (i) to Theorem 0 imply that çC:pC is the conjugate transform of h(0,~ ):T( O).

It is then clear that q>C is bounded from below on pC by the function whose

function values

:1. q~ (p) ~ sup ((et,p)-h (0,.~)] for each pEpC.
iE [1,2,...)

Being the supreaum of affine functions makes convex and , when M is finite,

polyhedral .

To obtain the uppór approximating function, first note that the (Young-

Fenchel ) “conjugate inequality” for ,C :pC and b(0, ):T(0) asserts that

= (ei,p) _ h(O,ei) for each p E a ~h(O ,e~ ), i=l,2,...
It is then clear from the convexity of ~~C that affine interpolations between such

function values bound q? fr om Ibove. In fact , q? is obviously bounded f rom above
C

- • by the functio n whose function values are simply the infimum of all corre-

sponding interpolated values . Clearly, q~ is convex and, when the nusher of

interpolation values ii finite, polyhedral.
• For the precedi ng method to be practical, it is clear that the dual objec-

tive function b(0 ,~ ) :T (O) must be computed explicitly (in terms of simple

formulas) -- a computation that may be possible only if certa in additiona l

(uninteresting) perturbation parameters are included as components of p . How-

ever, the following section shows how to subsequently delete such additiona l

para ters (i.e. keep them zero ) by jud iciously choosing each mesh K,

— 8 —
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• 3. The i~ results. Tb. duality between suboptimization and parameter deletion

can be crystallized as the following theorem.

Theorem 1. Suppose that g:C is convex and closed, and let the coemonent parti-

• tioo.s

(d,p) = (d,p’,p )
and

(q,e) ~ (q,e ’,~~)

be ccematjble in the sense that p ’ and e ’ have the same dimension (which means

ot cours. t4~iat f ~~~ C al so have the same dimension ). If 0 E (rI ~~) wher e

~~ (f ~(d,p’,~f) EC for at least one

• then e deletion of p’ is the dual of a (!~~)optimigation over C in the sense that

(i) the function ~ :~~ with domaip

C’ ~~((d ,p ’)~ (d ,p ’,O) EC )

and functiona l values

g’ (d,p’) ~ g(d,p’,O)

has as its coniunste transform the function h’ :1? with domain

V ~~t ( !,e’)~ (q, e ’,C. ) E D  for at least one C)

and function vsliiea

inf b(q, e C )
CET,(q,e’)

T5 (q, e~) e ~~ (q,s’,C ) ED)

(ii)~~~~~~~

T (i,s’) ~~(CET ,(q,e’)~ h(q,s’,i) tt (q,s’))
ii eat ~~ tv for sash (q,s’)EV. •

- 9 .
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Proof • For a fixed but arbit rary (q,s’) consider the programaing fami ly whose

inf imun function ~(.;q,e’):ø’ has function valu ss

0 Ø~~,q,e ’) e inf
(d ,p’)ES’(p5

where

~ f (d,p ’)~(d,p ’,p~ EC)

Th. function g (’,x,)-(q, )-(e’,~):c clearly inherits convexity and closedness

from g:C, so ~heorem 0 can be applied to this family and its dual. To compute

its dual, simply observe tha t

sup f (r,d)+ (r’,p’)+(e ,f)_ (g (d ,p’,p5_ (q,d) _ <e ’,p’)1)
(d ,p,p’)E C

is finite if and only if (r ,r ’,d’) ED- (q,e’,o), in which case this supre.
equals b(r+q,r ’ +.‘,d). Consequently, the dual family baa an infimum function

*~~.,x;q,e ’) :~~q,e’) with domain

f(q,e ’) G ((r,r ’)~ (r,r’,d’) ED- (q,e ’,o) for at least one C)

and function values

$~r ,r ’ ;q, e ’) ~ inf• CET’~r,r ’;q,e ’) -

where

1~r ,r ’ ;q, e ’) ~ (C (r ,r ’,d) E D-  (q, s’,ofl

Kay, the hypothesis tha t 0 E (ri ~~) along with conclusions (I) through (i)
of Theorem 0 imply that ~~0;q,e’) is finite if and only if l(0,0;q,e’) / 0.
But this sans that sup f (q,d)+ (e ’,p ’)-~~d,p’)) is finite if and only ii-

(d,p’)EC’
(q,e ’) EV;  is which case (the duel if) conclusion (v) to Theorem 0 (relative to

I

the infiRem function 
~ :V) sss.rts that

sap ((q,d)~~(s’,p’)-~~4,p ’}) e
(d ,p ’) EC ’

and

• 
.

— 1 0 —
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provided we can show that there exists (d,p’) EV(0) for which (d ,p’,O) E (ri C).

Toward tha t end , observe that 9.~~’C where ~~
‘ is the orthogonal projector

onto the ptaxes . Fro m the hypothesis that C is convex and from Theorem 6.6 on

• page 148 of (lle J we now infer that (ri ~t)= 3(ri C). Consequently, the hypothesis

that OE(ri (~) implies the existence of a point (d,p’,O)E (ri C) for which

(d,p’) ES’(o) . 
• q.e.d.

It is important to note that conclusion (i) to Theorem 1 is the key to

extending our parametric programaing method to a method for constructing, with

only a limited use of numerical optimization techniques, the restriction

of c~~c to the desired domain

p
C ’ 

~I[PII (p~,o) EP
C
)

• In particulér, observe that the appropriate dual feasible solution set

T~0) e (e ’I ( O ,e’) E V )  = (e’I(e ’,~’)ET(o) for at least one C).

The latter representation shows that T.(O) is not ~~ ty if and only if T(0)

is not empty ; in which case T,(0) can be computed explicitly in terms of T(0),

even though it is generally impossible to compute h’(O ,e’).xplicitly in terms

of h (0,e’,d). Consequently, given that T(0) is not empty and can be computed

explicitly (in terms of simple formulas), the latter representation shows that

can also be computed explicitly, and hence can easily be covered with a

mesh

~ 1 2
— (e ,e~ ,. .,e ’ i . . .)  C T,(0) .

Each mash K’ leads to both en app~oxjastiug function that bounds ,C( ,o) from
below and an approximating function that bou~ds ~c(. ,0) f ran above -- approxi-

tioss that can be 4e with arbj trary accuracy, simp ly b~ choosing the mesh •

it to be sufficiently dense in T.(0) .

Ion, the derivation at the end of section 2 (applied to (s ~
‘ and it: V ,

- ~~~ rather them, to g:C aad h:D) produces the lover approximating function whose

11
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function values

sup ((e ’1,p ’> . h’~O,e ’1.)J for each p ’Ep ~0 1 iE ( 1,2,...)

Note that the only nont rivial ingredients in this formula are the nushers

h0(0,e hh i), i E f l ,2 , . .. }  -- nuièers that can be obtained from (sub )optimstions of

h(0 ,e ’1,it) over C ET 5(0,e’
t), hopefully “with only a limited use of numerical

optimizat ion t echnique s’ (because of a hopefully small dimension for C).

The derivation at the end of section 2 also produces the upper approxi-
mating function whose function values are simply the infims of all corre-

sponding interpolated values , computed from th. interpo lating values

= (e h l ,p* )_ h ~0,e
i) for each p ’E~51b’~O,e’

1 ), 1.4,2,...
However, the sets ~~~h 1(O e’~ ) iE (l ,2,...) in this formula are genera lly

difficult (if not impossible) to compute , due to e lack of simple formulas
for it(O,’. ):T.(O) .

The following theorem pr ovides a rem .y for the preceding difficulty.

Theorem 2.~ If the hypotheses of Th.órem 1 are satisfied and if e ’ ET.(o) ,
then

(i) there exist, at least ~~e vector p ’ E~~,,it(0,s’) when .‘ E (rL T~0)),.
(ii ) (p ’,0 ) E ~~ h(0 ,e’,d )  ~~~~~~~ E~~~,it(0,e ’) ~~~ C’
(iii) ~C(~~,0) = (e ’ ,p ’) - h (O ,e ’ ,C )  ~~~~ (p,0)Ea,h(Q,e.,C*).

Proof . Conclusion (i) is an i ediats consequence of convexity theory , because

h°(0,):T, (0) is the conjugate transform of ç~(.,0) and hence is convex and closed .

• To prove conclusion (ii), observe that

• h’(O ,e ’t ) a I t (o ,e’)+:(p ’,s•t .e ’) fot each e’lET (o).

• But it(0,e’). b(O ,.’,C ) ,  so

it(O,s’t)~~h(Q,e’,(~~) + (p ’,..g. e.) for each etET .(o).

-12 -
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I
Using the definition of If(O,e’t), we now infer tha t

h(0,e~t,Ct)~~h(O,eI,C*)+(pi,e~I _ e I) for each (e ’t ,e°t) ET (0),
which implies that

f o r  each (e ’t,Cl)ET(o).
Hence (p~,0)E~~h(0,s~,C*).

Conclusion (iii) is i sdiate from conclusions (I) through (1.) of Theorem 0
and conjugate transform theory . q...d.

It is important to note that conclusion (i) to Theorem 2 asserts that the

sets ~.,b’(0,e ’t ), i E ( l,2,...), in the formula for interpolating values, are not

empty when if ~~ (riT,(0)) -- a rather unrestrictive condition on if. Moreover,

conclusion (ii) to Theorem 2 and conclusion (Li) to Theorem I together imply

• that each p ’ E~ eiIf (O,.’~ ) can be obtained from any set ~~h(O,e’~,C )  for which
Ce E1~(0,e’

t). Finally, conclusion (iii) to Theorem 2 assert s that our formula
for interpolating values can actually be Ixpressed in terms of the sets

iE (l,2,...) -- sets that tend to be (relatively) easy to compute,

] due to the frequent availability of (relatively) simple formulas for h(0, ) T(0)

le Decomeosition duality. This topic involves a minimex representation
[11~, part III) of the Rockafsllir dull problem 1(0) in terms of a (generalized
Lagrangian) saddle function £ •

-

• To construc t £ fro, the given functi on g:C, let

• $~~~(4j ( d ,p) E C  for at L.S*t o~.p)

and suppos. that

• P( d)~~~(pI (d ,p) E C) for d E l .

Also, sc~~3se that 
*

1(d) e ~~ tat ts(d ,p) - (e ,p)1 is Limit.) for d E I
pEP (d)

—

, 
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and let

• Si
dEl

• 
. Then, £ has domain I x e and function values

Z(d ;e) ~ m i  (g(d,p)-(e,p)1 for dE~ and e~ e.
pEP (d)

To obtain the minimax representation of problem ~(o), note that
inf £(d;e) = inf iif  (g(d,p)-(o,d)- (e,p)JdEl dEl pEP(d)

• 
= inf (g(d,p) - (O ,d) - (e,p)~(d ,p ) E C

= - sup [(O ,d ) + ( e,p ) -g (d ,p) ] .
(d ,p) EC

These equations clearly imply the objective function identity

mnf .C(d;e)+h(o,e) m 0 for eET(O);
dEl

from which we readily infer the minimax (actually miximin) representation
• sup Lnf £(d;e)+ m i  h(0,e) = 0

eE e dEl  T~~~ e ET(o)
• How, under the hypotheses of Theorem 1, a saddle function t ;S x ~‘ can be

• constructed from the given function g~ :C~ in the same way that £:$xe has been
constructed from g:C. Moreover , conclusion (i) to Theorem 1 then implies the
atnimax representation

sup m t  t(d;e ’)+ m t  m t  h(0,e’,C) 0
•‘EV dES e’E1~(O) CET5(O,e’)

This equation expresses the dua lity between 
~ generalized Deutsig-Wolfa decompo-

sition and a generalized Bender. decompo.ition . The outer supreaim and the outer
infiai. ar e the resp ective master problems; and the inner infias discompose into
respec tjve isfims sums when there ii sufficient “separab ility” and “sparsity” - -
requirements on g:C that can best be underStood in the context of subsections
3.1.6 and 3.3.6 of (9) , viewed from the vantag e point of 112).

-____ 
_ _ _  _ _ _  _ _ _ _
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